Jump to Navigation

Advances in Porous Pavement, Different types of materials and continuing research offer more options.

By Tara Hun-Dorris, Stormwater Magazine, March-April 2005

Pavements are an intrinsic, seldom-thought-about part of life, particularly in urban areas. However, for developers, industrial facilities, and municipalities addressing stormwater and associated water-quality guidelines and regulations, pavement stays very much at the forefront of planning issues. “Pavements are the most ubiquitous structures built by man. They occupy twice the area of buildings. Two-thirds of all the rain that falls on potentially impervious surfaces in urban watersheds is falling on pavement,” says Bruce Ferguson, professor and director of the School of Environmental Design at the University of Georgia in Athens.

Porous pavements, designed to allow air and water to pass through, are today just a small fraction of all pavement installations. However, their popularity is steadily increasing on a percentage basis, and they have been installed in all regions of the United States, Ferguson says. “This is potentially the most important development in urban watersheds since the invention of the automobile. The automobile is causing us to build all these pavements and have all these oils that we spill. If we can transfer the environmental function of the pavement, we’ve done two-thirds of the work.”

If used properly, porous pavements can facilitate biodegradation of the oils from cars and trucks, help rainwater infiltrate soil, decrease urban heating, replenish groundwater, allow tree roots to breathe, and reduce total runoff, including the magnitude and frequency of flash flooding. Stormwater, particularly urban runoff and snowmelt, is the wastewater of the 21st century, according to John Sansalone, associate professor in the Department of Civil and Environmental Engineering at Louisiana State University (LSU) in Baton Rouge. As reuse becomes more necessary, runoff will eventually be seen as a valuable commodity, he explains. This makes porous pavements, with their potential to revolutionize stormwater management, an important technology for the future.

Ferguson has been studying porous pavements for more than a decade. In his book, Porous Pavements (2005), Ferguson identifies nine categories of porous pavement: decks, open-celled paving grids, open-graded aggregate, open-jointed paving blocks, plastic geocells, porous asphalt, pervious concrete, porous turf, and soft paving.

For entire article, including many success stories from varied climates, please visit website.